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ABSTRACT

Berenger’s PML technique is modified to allow for

the absorption of evanescent waves, as well as prop-
agating waves, in FDTD modeling of wave propaga-
tion in planar waveguiding structures. Analytical re-
sults are used to illustrate the validity and capability
of the proposed modification. Results from FDTD and
compact 2D-FDTD simulations demonstrate its per-
formance.

INTRODUCTION

Berenger’s perfectly matched layer (PML) approach
to the truncation of FDTD grids has been used suc-
cessful y in conjunction with electromagnetic radi at ion
and scattering problems in two and three dimensions
[1-3]. An alternative approach to the construction of
the PMLs, directly from Maxwell’s equations using
stretched coordinates, was presented also in [4]. How-
ever, up to this point there has been no detailed in-
vestigation of the performance of PMLs with regards

to absorption of bound waves with evanescent behav-
ior transverse to their direction of propagation, c)f the
type encountered in practice in conjunction with var-
ious types of planar waveguiding structures. Except
from a brief discussion in [3], there has been no careful
investigation of the effect that a PML, positioned par-
allel to the media interface that supports such bound
waves, might have on the propagation characteristics
of the wave, especially when the PML is brought close
to the interface.

Published results from FDTD simulations of radia-

tion and scattering problems indicate that the I?MLs
can be brought very close (as close as 2 grid cells) to
the radiatoriscatterer. Such a capability is highly de-
sirable for the FDTD analysis of int egrat ed microwave,
millimeter wave and opt ical circuits, in order t c, keep
computer memory requirements and CPU time at a

minimum without sacrificing the numerical accuracy of
the simulations. Such circuits include a variet y of reso-
nant structures, the electromagnetic behavior of which
is dependent on the dispersive propagation characteris-
tics of the waves supported by the waveguiding sections
that comprise them. Consequent y, it is important to
investigate and comprehend the impact of PMLs on the
dispersive characteristics of planar waveguiding struc-
tures before any circuit-level FDTD simulations using
PMLs can be performed with confidence.

A first attempt to this investigation is presented in

this paper, Through an analytic study of the eigen-
value problem of wave propagation in a dielectric slab
waveguide with PMLs present on either side of the slab,
we demonstrate that Berenger’s PML disturbs the efec-
tive index of the propagating wave. Furthermore, we
introduce a modification to the original PML that is
shown to alleviate this difficulty. FDTD simulations
of wave propagation in slab waveguides illustrate the
numerical implementation of the modified PML. Fi-
nally, applications of the modified PML in compact

2D-FDTD simulations of open rnicrostrip structures

are used to demonstrate its accuracy.

THEORY

Using the stretched coordinate approach proposed
in [4], Maxwell’s curl equations are written as

8—d? =
&

78X17

+7 = v, x 1?

(1)

(2)

We restrict our attention to the two-dimensional case
with 8/dy = O. As it is well knc)wn, Maxwell’s equa-
tions decouple into two independent sets, one involving
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the field components Ilu, Ez, and Ez (TM polariza-
tion), and one involving the field components Ey, Hz,

Hz (TE polarization). The pertinent equations for the
TM polarization are

jwcE.= = :: (HY. + HYZ)

laH.—= (4)
.s~ 83 y

jwcEzz = -~~(Hyz+Hg,)
.

;aH— ———— (5)
S2 az y

la
jwpHy. = ~z 8Z Ez.—— (6)

la
jw/tHyz = –——Ez= (7)

Sz a~

where the split-component formalism used with
Berenger’s PML condition, Hym, Hu:, Ezg and 11~=,

has been used. In order to derive the wave equation
for the TM polarization, we substitute Eq. (4) in Eq.
(6) and Eq. (5) in Eq. (7), giving

lala
—W2)UEHY. = ——— —Hy (8)

SE ax Sc ax

lala
—U2rLLCHy. = ——— —ffy (9)

S2 a% Sz az

Since (Hyz + Hy, ) = Hg we obtain

lala
– w2/ueHy = ——— —Hy +

SE ax Sz ax : :.%% (10)

Next, we consider the eigenvalue problem associ-
ated with the TM-modes of the slab dielectric waveg-
uide shown in Figure 1. Nonmagnetic materials are
assumed. The waveguide has thickness 2W, constant
permittivity c1, and its axis coincides with the z axis.
Due to the symmetry of the structure, only the top half
is shown. A slab of thickness 1 and permittivity 62 < ~1
represents the medium outside the guide. Notice that
SZ = SZ = s = 1 for both the guide and the adjacent
slab. Beyond the C2 slab we introduced an Al-layer
structure terminated by a perfectly conducting plane.
All layers in the structure have the same permittiv-
ity, C2; however, their thicknesses, d,, and the values
of SZ, , are allowed to vary, while sz~ = 1. Let ,6 be
the unknown propagation constant for even TM-mode
propagation in z. A straightforward analysis of the
eigenvalue problem results in the following eigenvalue
equation

kz, cl
tan(krlw) = _ x S (11)

where ~ is

where k~l = w2poc1 – ~2 and k~, = @2 – w2poc2. For
propagating modes, kz= is real and positive. At this
point, it is appropriate to recall that the eigenvalue
equation for the even TM modes for the case of the

standard slab waveguide of thickness 2W and permit-
tivity ~1 embedded in a homogeneous medium C2 is
given by tan(klw) = (k2c1)/(k1~2). Thus, the term
& of Eq. (12) may be thought of as the “error” term
caused by the truncated domain and the presence of
the layered structure. It can be seen that as 1 ~ co
in Eq. (12), S e 1, recovering the eigenvalue equation
for the standard slab waveguide. Eq. (12) also suggests
that instead of having 1- cm the eigenvalue equation
for the standard waveguide can be reclaimed by letting

Sz, assume large values. The value of SC, required is

dependent on the problem. Further, we notice that s.,
needs to be positive to cause the error terms to become
negligible compared to 1. At this point, it is appropri-
ate to recall that for Berenger’s PML Sz, is of the form
SZz = 1 – j(ai/wci) and, as such, it does not cause any
additional attenuation (since kzz is real) to help reduce
the error term in Eq. (11).

NUMERICAL IMPLEMENTATION

The analysis of the previous section suggests the use
of s values in the stretched-coordinate formulation of
the PML with Re{s} > 1 in order to facilitate rapid
absorption of evanescent waves without affecting their
propagation characteristics. Therefore, in order to en-
compass the general case of planar structures that have
both radiating and waveguiding properties, we allow s
to assume complex values with real part greater than
1. More specifically, si takes the form

—— ()s; 1+$

= ‘~(1-4 (13)

where i = x, y, z. Notice that in addition to the real
part of Si, s:, being greater than 1, the ratio ui/e is
scaled by s; also. With this notation for Si, the modi-
fied Maxwell’s system for the TM case takes the form

(’:+4E= = ;; (Hy= + HYZ) (14)

(’:+”Z)EZ = -%@~=+H,J@)
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(16)

(17)

RESULTS

As an example, consider a guide with a core of w =
1.0 cm and and index of refraction of 1.3, surrounded
by air. Fig. 2 shows the analytical results of Eq. (11)
and numerical results for A. = 3.0 cm, 1 = O.5I cm,
with a 10 cell, parabolically graded PML with each
layer being 1.0 mm thick. The solid line is the result
of Eq. (11) with the dotted line being the result when
S = 1, The stars are obtained from the numerical
implementation of Eqs. (14)-(17). The real part of s.,
is varied in the PML as

()
2

i

‘“ = ““9 iii
+1 i=l,2, ..., 10 (18)

and the imaginary part is set equal to zero.

From Fig. 2 we see that the trend of the numerical
implement ation matches that of the analytical results.
Further, in all cases the percent difference between the
analytical and numerical results is less than O.5%. We

note that the magnitude of the normalized modal field
at the PML interface is around 0.46, showing that it is

not necessary to let the field decay significantly before
introducing the PML.

A very useful application of this modified PML trun-
cation scheme is in the compact 2D-FDTD dispersion
analysis of open multiconductor waveguiding systems
[6]. For lossless systems, (i.e. planar waveguides that
do not support leaky modes) the field behavior in the
transverse plane is totally evanescent. Therefore, we
can remove the a terms and simply use six field com-

ponents as in standard FDTD.
As an example, Fig. 3 depicts the frequency depend-

ence of the effective dielectric constant for the even
and odd modes of the coupled microstrip shown in the
insert obtained from a compact 2D-FDTD simulation
with modified PML truncation. For this specific ge-
ometry, w/h = 1, s/h = 2, and EI = 9.7c0. For the
odd mode, perfect electric conductor (PEC) walls are
placed on the left and bottom sides while 10 celll PML

layers (s~vg = 10) are placed on the top and right, sides.
The even mode is modeled in a similar fashion, except
that the PEC on the left wall is replaced with a per-
fect magnetic conductor (PMC). Even though the PML
layers are placed only 5 cells from the conductor, the
agreement with the results in [5] (A) are accurate to
within 1.25’XO.

In order to evaluate the effectiveness of the modified
PML layer, a comparison was made to the case where

the PML layer is removed. Fifteen cells from the con-
ductor, a PEC is placed on the top side and a PMC is
placed on the right side. Fig. 4 shows the power spec-
trum densities (PSD) of the transformed time domain
responses for the odd mode with ,(3= 1.5( l/cm). The
solid and dashed lines denote the spectrum obtained
by using the modified PML and PEC/PMC bound-

ary conditions respectively. The shift in frequency
for the PEC/PMC boundary condition translates to
a 8’%0error in Cefj. Also note that the PSD for this
case shows appreciable energy beyond the fundamental
mode. This is due to excitation of higher order (wave-
guide) modes in the structure caused by the presence
of the PEC/PMC walls.
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Figure 1: Slab waveguide geometry for analytically sol-

uble problem.
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Figure 2: Results for example problem (———solution

of Eq, (11), - -- solution of Eq. (11) with & = 1, *
FDTD results).
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Figure 3: Effective permittivity of even and odd mode
for a coupled microstrip (— and --- 2D-FDTD re-

sults, A results from [5]).
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Figure 4: PSD of odd mode (— PML boundary con-
dition, --- PMC/PEC boundary condition).


